889 research outputs found

    Isomeric states close to doubly magic 132^{132}Sn studied with JYFLTRAP

    Full text link
    The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for 11/2−11/2^- isomers in 121^{121}Cd, 123^{123}Cd, 125^{125}Cd and 133^{133}Te, for 1/2−1/2^- isomers in 129^{129}In and 131^{131}In, and for 7−7^- isomers in 130^{130}Sn and 134^{134}Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to 132^{132}Sn. A new excitation energy of 144(4) keV has been determined for 123^{123}Cdm^m. A good agreement with the precisely known excitation energies of 121^{121}Cdm^m, 130^{130}Snm^m, and 134^{134}Sbm^m has been found.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Precision mass measurements of radioactive nuclei at JYFLTRAP

    Get PDF
    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.Comment: 4 pages and 4 figures, RNB7 conf. pro

    Mass measurements in the vicinity of the doubly-magic waiting point 56Ni

    Full text link
    Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with a precision of dm/m \le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu, 58Cu, and 59Zn have been measured directly with a typical precision of better than 0.7 keV and Coulomb displacement energies have been determined. The Q values for proton captures on 55Co, 56Ni, 58Cu, and 59Cu have been measured directly. The precision of the proton-capture Q value for 56Ni(p,gamma)57Cu, Q(p,gamma) = 689.69(51) keV, crucial for astrophysical rp-process calculations, has been improved by a factor of 37. The excitation energy of the proton emitting spin-gap isomer 53Co^m has been measured precisely, Ex = 3174.3(10) keV, and a Coulomb energy difference of 133.9(10) keV for the 19/2- state has been obtained. Except for 53Co, the mass values have been adjusted within a network of 17 frequency ratio measurements between 13 nuclides which allowed also a determination of the reference masses 55Co, 58Ni, and 59Cu.Comment: 14 pages, 13 figures, submitted to Phys. Rev.

    A modified stairstep apparatus for studies of allelopathy and other phytotoxic effects

    Get PDF
    The characteristics and performance of a modified stairstep, nutrient solution recycling, apparatus are described. An experiment in which the allelopathic potential of Agropyron repens was examined showed the apparatus to be reliable and accurate in operation. Allelopathic activity by A. repens was confirmed. The apparatus is also suited to studies of phytochemicals produced in stubble retention reduced tillage systems, in green manuring and in cognate areas

    Penning trap at IGISOL

    Get PDF

    Q_EC values of the Superallowed beta-Emitters 10-C, 34-Ar, 38-Ca and 46-V

    Full text link
    The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and 46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results.Comment: 9 pages, 7 figures, 5 table

    Ground-state spin of 59^{59}Mn

    Get PDF
    Beta decay of 59^{59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured ÎČ\beta-decay rates the ground-state spin and parity are proposed to be JπJ^{\pi} = 5/2−^{-}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line
    • 

    corecore